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Abstract
Inflammatory bowel disease is a chronic gastrointestinal inflammatory disorder associated

with changes in neuropeptide expression and function, including vasoactive intestinal pep-

tide (VIP). VIP regulates intestinal vasomotor and secretomotor function and motility; how-

ever, VIP’s role in development and maintenance of colonic epithelial barrier homeostasis

is unclear. Using VIP deficient (VIPKO) mice, we investigated VIP’s role in epithelial barrier

homeostasis, and susceptibility to colitis. Colonic crypt morphology and epithelial barrier ho-

meostasis were assessed in wildtype (WT) and VIPKOmice, at baseline. Colitic responses

were evaluated following dinitrobenzene sulfonic acid (DNBS) or dextran-sodium sulfate

(DSS) exposure. Mice were also treated with exogenous VIP. At baseline, VIPKO mice ex-

hibited distorted colonic crypts, defects in epithelial cell proliferation and migration, in-

creased apoptosis, and altered permeability. VIPKO mice also displayed reduced goblet

cell numbers, and reduced expression of secreted goblet cell factors mucin 2 and trefoil fac-

tor 3. These changes were associated with reduced expression of caudal type homeobox 2

(Cdx2), a master regulator of intestinal function and homeostasis. DNBS and DSS-induced

colitis were more severe in VIPKO than WTmice. VIP treatment rescued the phenotype,

protecting VIPKOmice against DSS colitis, with results comparable to WTmice. In conclu-

sion, VIP plays a crucial role in the development and maintenance of colonic epithelial barri-

er integrity under physiological conditions and promotes epithelial repair and homeostasis

during colitis.
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Introduction
The intestinal epithelium and overlying secreted mucus layer are all that separates the host from
its intestinal luminal environment. Impaired intestinal epithelial barrier integrity has been
shown to increase susceptibility to immune-mediated inflammatory disorders, including in-
flammatory bowel disease (IBD) [1]. While there are many factors controlling intestinal barrier
function, the enteric nervous system (ENS) plays a critical, yet incompletely understood role in
regulating this key aspect of gut health. The ENS regulates gastrointestinal (GI) physiology and
function, in part through secretion of neuropeptides, including VIP [2]. In IBD, intestinal in-
flammation can disrupt ENS structure and function, causing patients to experience abdominal
pain, urgency and diarrhea, even during quiescent disease [2]. Overt intestinal inflammation
has been associated with significant decreases in VIP+ neurons as well as altered expression of
VIP+ neuronal subpopulations [3, 4]. Furthermore, it was recently shown that VIP and its re-
ceptor VPAC1 could not be detected in tissues from IBD patients suffering severe mucosal dam-
age [5]. These findings suggest dysregulated VIP responses may contribute to IBD pathogenesis,
but at present, the role of VIP in maintaining intestinal health is largely unexplored.

VIP fibers form a dense neural network throughout the lamina propria that likely innervate in-
testinal epithelial cells (IEC) [6]. Aside from neurons, immune cells including T cells, B cells,
mast cells, and eosinophils produce VIP [7]. VIP activates G-protein coupled receptors VPAC1
and VPAC2, which are abundantly expressed throughout the gut [6]. However, the role of VIP
and its receptors during colitis remains unclear. VIP treatment has been shown to reduce the se-
verity of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis [8, 9] and to protect IEC bar-
rier integrity during Citrobacter rodentium-induced colitis [10]. However, higher concentrations
of VIP can lead to worsening of TNBS-colitis [8] as well as impaired barrier function, at least in
vitro [10]. Moreover, variable responses have been associated with DSS challenge with exacerbat-
ed disease in mice lacking VPAC2 compared to wildtype (WT) mice, whereas Vpac1 -/-mice [11]
and Vip-/- (hereafter referred to as VIPKO) mice had milder disease thanWTmice, and use of
pharmacological inhibition of VIP receptors inWTmice was also associated with milder disease
[12, 13]. VIP KOmice also developed a milder clinical response to TNBS-induced colitis than
WTmice, although histological scores and cytokine levels in the colon did not differ between the
two strains of mice and splenocytes from TNBS-treated VIP KOmice exhibited an enhanced pro-
liferative response to anti-CD3/CD28 stimulation in vitro [14]. Despite these conflicting results,
VIP is undoubtedly an important regulator of normal gut function and further characterization
of its actions are required under both physiological and pathological conditions.

In this study, using VIPKOmice we show that the absence of VIP leads to abnormal colonic
crypt morphology and function, reflecting baseline defects in IEC proliferation and migration.
VIPKOmice also suffered impaired goblet cell development, leading to significantly reduced ex-
pression of mucin 2 (Muc2) and trefoil factor 3 (Tff3) as well as overt intestinal barrier dysfunc-
tion. These changes were associated with reduced expression of Cdx2, a transcription factor
known to modulate cell proliferation, migration and differentiation [15]. Notably VIPKOmice
also showed heightened susceptibility to DNBS and DSS-induced colitis, while treatment with
VIP rescued the phenotype, protecting VIPKOmice against DSS-colitis. Our data thus identifies
VIP as an important regulator of IEC homeostasis and function; therefore alterations in its ex-
pression or function may well contribute to the symptomatology and pathogenesis of IBD.

Methods

Mice and epithelial cell lines
Eight-week-old VIPKO mice (C57BL/6 background) [16] were bred at the Child and Family
Research Institute animal facility. Male mice were used in all experiments due to the
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consistency seen in their DSS and DNBS-induced colitis. As no significant differences were
found between littermates (Vip+/+) and C57BL/6 mice from Charles River under physiological
and pathological conditions, age matched male C57BL/6 mice were purchased from Charles
River Laboratories (St. Constant, QC, Canada) and housed as previously described [17]. All
mice were fed a standard chow diet (LabDiets, Picolab rodent diet 5053) with an n-6: n3 poly-
unsaturated fatty acid (PUFA) ratio of 8:1. The protocols were approved by the University of
British Columbia’s Animal Care Committee and in direct accordance with guidelines of the
Canadian Council on the Use of Laboratory Animals. Human Caco2 (ATCC HTB-37) and
HT29 (ATCC HTB-38) IEC lines were cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum, 20mMHEPES, 1% glutamine, antibiotics penicillin
(100U/ml) and streptomycin (100μg/ml) (Sigma Chemicals Co., St. Louis, MD). Cells were
maintained at 37°C in a humidified incubator of 5% CO2.

Induction of DNBS colitis in vivo and clinical scoring ex vivo
Colitis was induced by intra-rectal injection of 6 mg of DNBS in 100μL 50% ethanol via a poly-
ethylene catheter (PE-50) as previously described [18]. Following euthanization, colonic (distal
colon) tissues were assessed for macroscopic damage [sum of the following scores: extent of tis-
sue adhesion (0–2), colon wall thickness (in mm), macroscopic ulceration (0–10), fat wrapping
(0–5)] as well as histological damage [sum of the following scores: inflammatory cell infiltrate
(0-absent, 3-transmural), loss of epithelial architecture (0-normal, 3-severe), presence of crypt
abscesses (0–1), and goblet cell depletion (0–3), and tissue thickness at 100X magnification
(0-normal, 1–50% increase, 2–100% increase, 3->100% increase)] [18]. Luminal stool contents
were collected from the colon once opened, weighed, and then left to dry at 37°C for 48 hrs.
The contents were weighed again, with the water content defined as the percentage of the initial
stool weight lost after drying.

Induction of DSS colitis, clinical scoring and VIP treatment in vivo
Amodified version of the protocol described by Stillie R et al was used [19]. Briefly, acute colitis
was induced by adding DSS (36,000–55,000 kDa, MP Biomedicals #160110, Solon, Ohio, USA)
to sterile drinking water at a concentration of 3% (w/v) for 7 days, followed by a switch to tap
water for 3 days. The first day of DSS feeding was defined as day 0, and the mice were given DSS
until day 7 followed by 3 days of water. Control mice were fed with regular water (without DSS).
Mice were monitored for weight loss, stool consistency, rectal bleeding (hemoccult strips, Beck-
man Coulter) and severity of colitis as previously described [20]. For VIP treatment, 6–8 weeks
old mice were treated with 0.5 nmol VIP in saline administered by intraperitoneal (ip) injection
daily from day 0 to day 9 after DSS treatment. The dose chosen was in keeping with doses used
previously in murine models of colitis [10]. Control mice received saline alone by ip. injection.
Similarly, VIP was given to naïve mice that were not exposed to DSS treatment for 10 days.
Mice were euthanized on day 10 and the whole colon removed for evaluation of macroscopic
damage, and a section of the distal colon was then evaluated for histological damage and the
water content in the stool was quantified.

Histopathological scoring
Histological damage scores were calculated as previously described [20]. Briefly, distal colonic
segments (0.5cm) were fixed with 10% formalin and embedded in paraffin. Cross sections of
the colon (5μm) were cut and mounted on slides. Tissue sections were stained with hematoxy-
lin and eosin (H&E) and cell morphology was viewed using light microscopy. Six tissue sec-
tions from each animal were coded and examined by two blinded observers to prevent
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observer bias. Tissue sections were assessed (each separated by at least 500μm) under a Nikon
Eclipse 400 light microscope and averaged to obtain a mean histological damage score. The fol-
lowing criteria was used for scoring- inflammation (0–3), transmural inflammation (0–3) and
crypt damage (0–4). The score of each feature was multiplied by a factor (1–4) according to the
percentage of epithelial involvement. The maximum damage score with this system is 40.

Measurement of Intestinal Permeability
The FITC-dextran assay was performed as previously described [21]. Briefly, mice were given
0.1 ml of 80 mg/mL FITC-dextran (Sigma; FD4) in PBS by enema 2h prior to sacrifice. Blood
was collected by cardiac puncture and added to 3% acid-citrate dextrose; plasma was collected
and fluorescence was measured using a Wallac Victor fluorimeter (Perkin-Elmer Life Sciences,
Boston, MA).

RNA extraction and quantitative real-time polymerase chain reaction
(PCR)
Total RNA was extracted from freshly isolated colonic tissues as well as HT-29-Cl.16E cells
treated with recombinant VIP (0.6μM, 1μM and 3μM) by using Qiagen RNeasy plus mini kit.
RNA was reverse-transcribed using Superscript II reverse transcriptase (Invitrogen) and qPCR
and quantification was carried out as previously described [17]. Quantitative PCR was carried
out on a Bio-Rad MJ Mini-Opticon Real-Time PCR System (Bio-Rad), using IQ SYBR Green
Supermix (Bio-Rad). Individual primer sequences are listed in Supplementary Information
(S1 Table). After completion of the cycling process, samples were subjected to a temperature
ramp (from 53 to 95°C) with continuous fluorescence monitoring for melting curve analysis.
For each PCR product, a single narrow peak was obtained by melting curve analysis at the spe-
cific melting temperature, indicating specific amplifications. Primer pair efficiency was tested
according to manufacturer's instructions. Quantification was carried out with Gene Ex Macro
OM 3.0 software (Bio-Rad) where PCR efficiencies for each of the primer sets were incorporat-
ed into the final calculation. The ΔΔCt method was used to calculate the relative amount of spe-
cific RNA present in a sample, from which the fold induction of transcription of the gene was
estimated by comparison to values relative to the control samples. Data are expressed as
means ± SD.

Epithelial cell apoptosis
The terminal deoxynucleotidyl transferase-mediated dUDP nick-end labeling (TUNEL) stain-
ing was employed using the in situ cell death detection kit (Roche Diagnostics, Mannheim,
Germany) according to manufacturer's instructions, as previously described [17]. Briefly, co-
lonic tissue sections of 4μm thickness were mounted on glass slides, deparaffinized, hydrated
and treated for 15 min with proteinase K (50 μg/ml). After rinsing, the TUNEL reaction mix-
ture was added to the samples. The slides were incubated in a humidified chamber for 60 min
at 37°C in the dark. Slides were counterstained with 4,6-diamidino-2-phenylindole (DAPI).
For each section, the average number of TUNEL +ve cells per visual field was calculated at
400x magnification.

Immunohistochemistry
Immunofluorescence staining was performed and assessed as described previously [17]. Prima-
ry antibodies included rabbit monoclonal anti-ki67 (Thermo scientific), rabbit polyclonal anti-
sera against murine colonic mucin Muc2 (1:50; a gift from Jan Dekker), rabbit polyclonal
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antisera against TFF3 (1:200; a gift from D. Podolsky), polyclonal rabbit anti-VIP (Immunos-
tar), goat polyclonal anti-carbonic anhydrase (CA) I (Santa Cruz), rat anti-BrdU monoclonal
antibody (1:200, AbD Serotec) and rabbit anti-serotonin (5HT) (Antibodies incorporated). For
immunohistochemistry of longitudinal muscle myenteric plexus preparations, colon tissues
were prepared as described previously [22]; primary antibodies included polyclonal rabbit
anti-VIP (1:1000; Immunostar), rabbit anti-neuronal nitric oxide synthase (NOS—1:500;
Transduction), rabbit anti-substance P (SP—1:1000; Immunonuclear Corp), and goat anti-
neuropeptide Y (NPY—1:1000; a gift from Thue Schwartz).

5-Bromo-2-deoxyuridine (BrdU) incorporation
Mice were administrated by i.p. injection with 10 mg ml-1 of BrdU (Sigma) as described previ-
ously [23]. The colons were excised at 72h post-injection. Distal colon segments were fixed as
described above. Following immunostaining for BrdU, the number of BrdU+ve IEC per crypt
was quantified, using only intact, well-oriented crypts.

Western blot analysis
Monolayers were lysed using 300 μl of lysis buffer [150mMNaCl, 20mMTris pH 7.5, 1mM
EDTA, 2.5mM sodium pyrophosphate, 1mM β-glycerophosphate, 1mM phenylmethylsulfonyl
fluoride (PMSF), 1mM sodium orthovanadate, and 1mM sodium fluoride, with 1% Triton
X-100, 1% phosphatase inhibitor cocktail (Thermo Scientific) and protease inhibitor cocktail tab-
lets (Roche, Mannheim, Germany)]. Lysates were resolved by 15% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred onto 0.2 μm PVDFmem-
branes (Bio-Rad). Rabbit anti-cyclin D1 and β-actin antibodies were all used at 1:1000 dilutions
and secondary anti-rabbit-HRP labelled antibodies were used at 1:2000. Blots were visualized by
an enhanced chemiluminescence detection system (Perkin Elmer). Incubation with anti-β-actin
was used as a loading control. The intensity of bands was quantified with Image J software and
the ratio of cyclin D1 intensity divided by β-actin intensity was normalized against the control.

Goblet cell enumeration
Periodic acid-Schiff (PAS) staining was carried out as described previously [24]. Under baseline
condition, the number of mature goblet cells was expressed as the total number of PAS+ve cells
per 100 epithelial cells. Phenotypically mature goblet cells were assessed based on the intensity
of staining, the size of the apical region, their location on the crypt base-to-surface axis, and
morphology [24]. Under DSS-induced colitis condition, the results were expressed as total
number of PAS+ve cells per high power field (HPF, 200X).

Statistical analysis
Analyses were conducted with Graph Pad Prism 5 statistical software for Windows (GraphPad
Software, San Diego, California USA). Results are expressed as mean value with standard error
of the mean (SEM). Differences between means were calculated by either one or two-way anal-
ysis of variance (ANOVA), or t-tests where appropriate. Specific differences were tested with
the Student-Newman-Keuls test where P of< 0.05 was considered statistically significant.

Results

VIP deficient mice display aberrant crypt structure at baseline
To investigate the role of VIP in colonic crypt morphogenesis and barrier homeostasis, VIPKO
mice were examined under baseline conditions. We first assessed colonic tissues for the
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presence and location of VIP. In WT mice, VIP was distributed throughout the neural net-
works, in the lamina propria, submucosa (S1A Fig) and myenteric plexus, while it was absent
in VIPKO mice (S1B Fig). No gross differences in SP, NPY or NOS immunoreactivity were ob-
served in the myenteric plexus when comparing VIPKO and WTmice (data not shown), con-
firming a VIP restricted deficiency. Deletion of the VIP gene was confirmed by PCR (S1C Fig).
Expression of VIP receptors, VPAC1 and VPAC2, was similar between WT and VIPKO mice
(Table 1). Histologically, VIPKO mice displayed abnormal colonic crypt morphology com-
pared to WT mice with significantly shorter (147.21 ± 2.81 μm vs. 168.47 ± 2.58 μm, p<0.001,
Fig 1) and wider crypts.

VIP enhances colonic crypt function at baseline
To assess colonic crypt cellular dynamics, IEC proliferation, migration, apoptosis, and barrier
integrity were examined. The proliferating colonic crypt cell population, marked by Ki67 (non-
G0 cycling cells) and BrdU (S-phase) was significantly reduced in VIPKO mice compared to
WT mice (7.85 ± 0.60 vs. 19.39 ± 0.68, p<0.05, Fig 2A) and (3.71 ± 0.20/crypt vs. 5.37 ± 0.22/
crypt, p<0.01, Fig 2B) respectively. Furthermore, the number of TUNEL +ve IEC was signifi-
cantly higher in VIPKOmice (5.77 ± 0.57/HPF vs. 3.17 ± 0.37/HPF, p<0.01, Fig 2C) suggesting
that an altered balance between cell proliferation and cell death might be responsible for the ab-
errant crypt morphology. Further evaluation of IEC migration dynamics using 72h post-BrdU
labeling [23] showed significantly lower BrdU+ve cell migration rates in VIPKO mice; with
BrdU+ve cells distributed throughout the crypts in WT mice, whereas positive cells were locat-
ed predominantly in the lower half of VIPKO crypts (Fig 2B). To further evaluate cell migra-
tion, colonic crypts were divided into lower, middle, and upper sections. Compared to WT
mice, BrdU+ve cells in VIPKO mice were predominantly in lower and middle crypt sections
(91.7% vs. 42.6%, p<0.001) with dramatically fewer BrdU+ve cells in upper sections (8.3% vs.
57.6%, p<0.001) compared to WT mice (Fig 2B), supporting a role for VIP in promoting IEC
migration and homeostasis. To determine whether VIP impacts on intestinal barrier integrity
in vivo, FITC-dextran was given via enema. VIPKO mice showed significantly higher serum
levels of the FD4 probe, compared to WT mice (0.90 ± 0.29 μg mL-1 vs. 0.28 ± 0.06 μg mL-1, re-
spectively, p<0.01, Fig 2D), indicating impaired barrier integrity in VIPKO mice.

To rule out the possibility that the VIPKO intestinal phenotype was due to developmental de-
fects during embryogenesis and/or neonatal development, the impact of VIP reconstitution was
assessed. VIP administered to VIPKOmice (6–8 weeks old) significantly reduced the number of
abnormal colonic crypts (80.14 ± 1.45% vs. 63.61 ± 7.74%, p<0.01), resulting in a colonic archi-
tecture more closely resemblingWTmice than untreated VIPKOmice (data not shown). VIP

Table 1. Real time PCR analysis of genes in wild type and VIPKOmice.

Gene WT mice VIPKO mice p value

Vpac1 1.07 ± 0.15 1.63 ± 0.21 0.11

Vpac2 1.09 ± 0.17 0.98 ± 0.11 0.58

Notch1 1.03 ± 0.10 1.26 ± 0.14 0.21

Hes1 1.04 ± 0.12 0.77 ± 0.13 0.16

Math1 1.01 ± 0.08 0.83 ± 0.09 0.24

Klf4 1.02 ± 0.09 0.96 ± 0.12 0.71

Klf5 1.04 ± 0.12 1.19 ± 0.14 0.42

Wif1 1.01 ± 0.07 1.00 ± 0.09 0.93

Relmβ 1.27 ± 0.38 2.63 ± 0.69 0.09

doi:10.1371/journal.pone.0125225.t001
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treatment significantly increased Ki67+ve cell numbers in the distal colon, compared to untreat-
ed VIPKOmice (11.85 ± 0.42 vs. 7.85 ± 0.60, p<0.05, Fig 2A) expanding the crypt proliferative
zone. Moreover, VIP treatment significantly increased crypt cell migration, significantly reducing
the number of BrdU +ve epithelial cells in the lower third of crypts (13.7% ± 0.8 vs. 44.1% ± 4.8,
p<0.01) while increasing BrdU +ve cell numbers in the upper third of crypts (52.3% ± 2.1 vs.
8.3% ± 2.0, p<0.001, Fig 2B), at 72h post injection, reaching levels similar to WTmice. Con-
versely, VIP treatment was associated with a significant reduction in number of TUNEL +ve IEC
in VIPKOmice (2.43 ± 0.21 /HPF vs. 5.77 ± 0.57/HPF, p<0.01, Fig 2C). Lastly, VIP treatment at-
tenuated intestinal barrier disruption in VIPKOmice, since VIP treated VIPKOmice showed
lower serum levels of the FD4 probe than VIP KOmice, declining to levels close toWTmice
(Fig 2D).

Taken together, these data suggest that VIP promotes colonic epithelial homeostasis under
physiological conditions.

VIP regulates colonic goblet cell numbers and function at baseline
As previous studies have shown a link between VIP and goblet cell production of Muc2 and
the trefoil proteins [25, 26], we next focused on colonic goblet cell distribution, maturation,
and secretory capacity in naïve WT, VIPKO and VIP treated VIPKO mice. Selective labeling of
neutral mucins with PAS showed numerous morphologically mature PAS+ve goblet cells dis-
tributed throughout the crypts of WT mice (Fig 3A), VIPKO mice had fewer PAS +ve cells and
were comparatively lacking mature apical PAS+ve goblet cells. Enumeration of PAS+ve cells
[24] confirmed that VIPKO mice had significantly fewer PAS +ve goblet cells compared to WT
mice (18.22% ± 1.48 vs. 26.58% ± 2.23, respectively, p<0.01, Fig 3A). VIP treatment of VIPKO

Fig 1. VIPKOmice display aberrant crypt structure at baseline.Representative H&E stained colon sections and quantitative analysis of crypt height and
width in WT and VIPKOmice. n = 6–10 animals/ group, results are represented as means ± SEM, *P<0.05, ***P<0.001.

doi:10.1371/journal.pone.0125225.g001
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mice restored the number of PAS +ve goblet cells in VIPKO mice, suggesting the rescue of gob-
let cellular dynamics. To further characterize goblet cell function, colonic tissues from the
aforementioned three groups of mice were examined for the location and expression of Muc2,
the major secretory mucin in the intestine as well as Tff3 a bioactive peptide involved in epithe-
lial migration and injury repair [23, 24]. VIPKOmice displayed markedly fewer Muc2 +ve gob-
let cells throughout their distal colon thanWT mice (10.65 ± 0.23/crypt vs.14.62 ± 0.52/crypt,
p<0.01, Fig 3B), and significantly reduced Muc2 gene transcript levels (36% decrease, p<0.05,
Fig 3D). VIPKOmice also displayed markedly reduced Tff3 staining compared to WTmice, es-
pecially in the upper portions of their crypts (Fig 3C), together with significantly lower num-
bers of Tff3 +ve cells (3.57 ± 0.32/crypt vs. 7.22 ± 0.27/crypt, p<0.001, Fig 3C) and
significantly lower Tff3 mRNA levels (54%, p<0.01, Fig 3D). VIP treatment significantly in-
creased the number of Muc2+ve and Tff3+ve cells per crypt in VIPKO mice (12.99 ± 0.77/
crypt vs. 10.65 ± 0.23/crypt and 5.93 ± 0.32/crypt vs. 3.57 ± 0.32, respectively, p<0.05, Fig 3B
and 3C). Consistent with the observations of Yusta et al [13] and Lelievre et al [16] small bowel
villus/ crypt length in VIPKO mice was increased as compared to WT mice (data not shown).

Fig 2. VIP enhances colonic crypt function at baseline. Exogenous VIP was administered to VIPKOmice (VIPKO-VIP) daily for 10 days. Immunostaining
for Ki67 and quantitative analysis of Ki67+ve cells (A). Immunostaining for BrdU+ve cells and calculated spatial distribution at 72h post injection (B).
Quantitative analysis of TUNEL +ve crypt IEC (C). Epithelial permeability measured by FITC dextran (D); n = 6–10 animals/group, results are represented as
means ± SEM, *P<0.05, **P< 0.01, ***P<0.001. Scale bar = 50 μm.

doi:10.1371/journal.pone.0125225.g002
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We next evaluated whether the defective phenotype involved all colonic epithelial cell line-
ages. Staining for 5-hydroxytryptophan (5-HT), an enteroendocrine cell (EEC) marker and for
carbonic anhydrase-I (CA-1), a marker of mature columnar epithelial cells showed no

Fig 3. VIP regulates colonic goblet cell numbers and function at baseline. Exogenous VIP was administered to VIPKOmice (VIPKO-VIP) daily for 10
days. Selective labeling of neutral mucins with PAS and quantification of PAS+ve cells as a percentage of total IEC/crypt (A). Immunostaining and
quantitative analysis of colonic Muc2+ve cells (B) and Tff3 +ve cells (C). Relative expression of colonic Muc2 and Tff3 (D), and Cdx1 and Cdx2 (E); n = 4–6
animals/group, results are represented as means ± SEM, *P<0.05, **P< 0.01, ***P<0.001. Scale bar = 50 μm. Arrows highlight cells that are positive in
PAS staining (A), Muc2 staining (B) and Tff3 staining (C).

doi:10.1371/journal.pone.0125225.g003
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significant differences in staining pattern or distribution between VIPKO mice and WTmice,
suggesting the defect in goblet cells seen in VIPKO mice was selective (S2 Fig).

Collectively, these data suggest that VIP regulates goblet cell numbers and function under
physiological conditions.

VIP induces Cdx2 signaling
AsWnt and Notch signaling pathways play a critical role in intestinal homeostasis, we exam-
ined whether VIP deficiency altered the expression of target genes associated with these two
signaling pathways. No differences in Notch1, Hes1, Math1, Krüppel-like factor 4 (KLF4),
KLF5 andWif1 mRNA expression were observed in colonic tissues of VIPKO mice compared
to WT mice (Table 1) indicating these regulators of IEC progenitor fate were unaffected by
VIP deficiency, at least at the transcript level [27, 28].

We next focused on the intestine specific caudal-related homeobox transcription factors,
Cdx1 and Cdx2, given their strategic role in regulating intestinal homeostasis [29–31]. We ob-
served a significant reduction in gene transcript levels of Cdx2 (but not Cdx1) in VIPKOmice
compared to WTmice (0.27 ± 0.03 vs. 1.13 ± 0.07, p<0.01, Fig 3E), suggesting that VIP may act
via Cdx2 expression. Importantly, VIP administration to VIPKOmice significantly increased
Cdx2 gene expression (0.73 ± 0.08 vs. 0.27 ± 0.03, Fig 3E, p<0.01), but did not change Cdx1
gene expression. These data suggest that VIP induces Cdx2 signaling, but not Cdx1 signaling.

VIP treatment of epithelial cells directly impacts their homeostasis
To clarify the impact of VIP on colonic epithelial cells, semi-confluent Caco2 epithelial cell
monolayers were treated with recombinant VIP (3μM) [32, 33] for 24h and stained with Ki67.
As shown in Fig 4A, and consistent with our in vivo data, VIP treatment significantly increased
Ki67+ve cell numbers compared to untreated monolayers (p<0.01), indicating that VIP can di-
rectly induce IEC proliferation. Consistent with this result, we also found that VIP induces the
expression of cyclin D1, another cell proliferation marker [34] (Fig 4B). To further explore the
mechanism by which VIP regulates intestinal goblet cell homeostasis, human HT-29 cells were
treated with recombinant VIP (3μM) [32, 33] for 4h and 24h and analyzed for expression of
MUC2, Tff3, and Cdx2, and KLF4 (Fig 4C and 4D). VIP treatment significantly increased gene
transcript levels of Cdx2 at 4h and of Tff3, Cdx2, KLF4, MUC2 (and other MUC genes, data not
shown) at 24h. These data strengthen the link between VIP and Cdx2, and demonstrate that
VIP can directly induce transcription of genes required for goblet cell maturation and function.

VIP deficient mice exhibit increased susceptibility to DNBS-induced
colitis
Having demonstrated an alteration in colonic IEC homeostasis and epithelial barrier integrity
in VIPKO mice, under physiological conditions we next determined if VIPKO mice were more
susceptible to chemically induced colitis. Mice were first challenged with DNBS. At day 3 post-
DNBS, mice were euthanized and the entire large bowel of VIPKO mice showed increased
damage compared to WT mice with shrunken ceca and significant mid to distal colonic thick-
ening, often accompanied by complete fat wrapping of the corresponding segment of intestinal
tissue (Fig 5A). Interestingly, fat wrapping is commonly associated with fibrostenotic resected
intestinal tissue from Crohn’s disease patients. Closer assessment of macroscopic damage re-
vealed significantly increased adhesion of tissues (p<0.05), fat wrapping (p<0.01) as well as
significantly increased overall macroscopic damage scores in VIPKO mice compared to WT
(p<0.01, Fig 5B). Histologically, at day 3 post-DNBS treatment, VIPKO mice exhibited signifi-
cantly increased histological damage scores compared to WT (p<0.05, Fig 5C and 5D).
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Fig 4. VIP treatment of IEC directly impacts epithelial homeostasis. Caco2 cells were treated with
recombinant VIP (3 μM) for 24h and stained with Ki67 (A); n = 3 experiments, results are represented as
means ± SEM. Caco2 cells were treated with recombinant VIP (1 μM, 3 μM) for 24h and cell lysates were
analyzed for protein expression of β-actin and cyclin D1 (B). HT-29 cells were treated with recombinant VIP
(3 μM) for 4h (C) and 24h (D) and analyzed for expression of MUC2, Tff3, Cdx2, and KLF4, n = 3
experiments, results are represented as means ± SEM, *P<0.05, **P< 0.01, ***P<0.001. Initial
experiments, included treatment with recombinant VIP (0.6 μM, 1 μM and 3 μM), but data not included for
lower doses as data most consistent with VIP (3 μM). Arrows highlight Ki67 +ve cells (A).

doi:10.1371/journal.pone.0125225.g004
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Colonic luminal fluid as a percentage of total luminal content post-DNBS treatment was signif-
icantly lower in VIPKO mice than WT mice (p<0.05, Fig 5E).

VIP protects mice against DSS-induced colitis
To determine if the increased susceptibility of VIPKOmice at our facility to develop severe mu-
cosal damage during chemically induced colitis was unique to DNBS, we also induced colitis in

Fig 5. VIPKOmice exhibit increased susceptibly to chemically induced DNBS- colitis. At day 3 post-DNBS treatment VIPKOmice display shrunken
ceca and significant thickening/damage of the mid to distal colon with fat wrapping when compared to WTmice (A), with significantly increased macroscopic
damage scores (B). Representative H&E staining of Day 3 post-DNBS treated WT and VIPKOmice (C), when scored histologically (D) shows a significant
increase in overall damage in VIPKO tissues compared to WT. Water content of luminal stool expressed as the percentage of the initial stool weight lost after
drying at 37°C for 48h (E); n = 6–9 animals/group, results are represented as means ± SEM, *P<0.05, **P<0.01.

doi:10.1371/journal.pone.0125225.g005
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these mice using DSS. As seen with DNBS treatment, VIPKOmice developed less severe diar-
rhea thanWTmice. DSS treated VIPKOmice showed increased disease activity, including in-
creased weight loss at day 5–6 post-DSS, compared to WTmice (Fig 6A). At day 10, DSS
treated VIPKOmice had significantly more blood detectable in their stool compared to DSS-
treatedWTmice (rectal score 0.9 ± 0.17 vs. 0.27 ± 0.09, p<0.05). Moreover, colitic VIPKOmice
showed severe histological mucosal damage in the distal colon, characterized by complete crypt
drop out, widespread ulceration and marked transmural infiltration of neutrophils and mono-
nuclear inflammatory cells (Fig 6B). In contrast, tissues of colitic WTmice retained crypt struc-
ture, showing only moderate inflammatory infiltrate and microscopic colitis scores were
significantly lower than DSS- VIPKOmice (12.28 ± 3.77 vs. 29.14 ± 4.51 (p<0.05, Fig 6B). To
address the mechanisms underlying the increased susceptibility of VIPKOmice, IEC prolifera-
tion, presence/absence of goblet cells and IECdeath were determined by Ki67, PAS and TUNEL
staining, respectively. DSS challenged VIPKOmice had dramatically fewer Ki67+ve IEC in the
distal colon, compared to DSS-WTmice (13.39 ± 1.40 vs. 47.05 ± 5.22, p<0.01, Fig 6C) and had
significantly more TUNEL+ve cells (presumed IEC in lumen and apex of crypts) than DSS-WT
mice (47.29 ± 3.98 vs. 22.80 ± 1.99, p<0.01, Fig 6E), indicating altered cell death and turnover in
VIPKOmice. Moreover, VIPKOmice had significantly fewer PAS+ve IEC in the distal colon,
compared to DSS-WTmice (10.00 ± 4.52 vs. 33.00 ± 8.07, p<0.05, Fig 6D) suggesting the possi-
bility of impaired mucus production/ secretion as a potential contributing factor.

Next, we examined whether VIP treatment ameliorated susceptibility of VIPKOmice to DSS
challenge. VIPKOmice treated daily with VIP throughout DSS administration showed a similar
phenotype to DSS treatedWTmice (Fig 6A–6E), displaying a similar pattern of weight loss
to DSS-WTmice and significantly higher body weights at day 10 post DSS than untreated
DSS-VIPKOmice (Fig 6A, p<0.05). Moreover VIP treated DSS-VIPKOmice showed an overall
reduction in rectal bleeding (data not shown), histological damage, inflammatory cell infiltration
(Fig 6B), and lower histological damage scores than untreated DSS-VIPKOmice (9.28 ± 3.77 vs.
29.14 ± 4.51, p<0.01, Fig 6B). Additionally, DSS-VIPKOmice treated with VIP had significantly
more Ki67 +ve cells (19.05 ± 1.31/crypt vs. 13.38 ± 13.90/crypt, p<0.05, Fig 6C), significantly
more PAS +ve goblet cells (44.88 ± 8.53/HPF vs. 10.00 ± 4.52/HPF, p<0.01, Fig 6D) and signifi-
cantly fewer TUNEL+ve cells (21.88 ± 1.35/HPF vs. 47.29 ± 3.78/HPF, p<0.01, Fig 6E) than un-
treated VIPKOmice, reaching TUNEL +ve cell numbers comparable with DSS-WTmice
(21.88 ± 1.35 vs. 22.80 ± 1.99/HPF, p = 0.73).

Taken together, these data suggest that VIP promotes epithelial barrier homeostasis, integri-
ty and function, thus reducing the severity of colitis and enhancing IEC recovery.

Discussion
The present study explores the role of the enteric neuroendocrine system and particularly VIP
in the regulation of intestinal barrier defenses. Over the past decade numerous studies have
identified key pathways of innate defense and/or recognition of commensal microbes in the
regulation of intestinal homeostasis, however studies involving the ENS have largely focused
on regulation of the mucosal immune system. Using in vivo and in vitromodel systems, we
demonstrate that VIP plays an indispensible role in regulating colonic mucosal integrity and
epithelial barrier homeostasis and its absence in an appropriate environmental context in-
creases susceptibility to colitis. To date, there are conflicting reports on morphological changes
of VIPergic neurons in the colons of IBD patients [3–5]. Moreover it is unclear whether the
morphological and functional changes in the ENS in IBD patients are secondary to inflamma-
tion-induced injury. Hence, the VIPKO mouse provides a unique opportunity to evaluate the
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Fig 6. VIP protects mice against DSS-induced colitis. Exogenous VIP was administered to DSS-treated VIPKOmice daily for 10 days. Change in body
weight over the 10-day study period,in naiveWT and VIPKOmice, DSS exposedWT (WT-DSS), VIPKO (VIPKO-DSS) and DSS plus VIP treated VIPKO
(VIPKO-DSS-VIP) mice (A). Representative H&E stained colon sections and histological damage score at day 10 in DSS exposedWT (WT-DSS), VIPKO
(VIPKO-DSS) and DSS plus VIP treated VIPKO (VIPKO-DSS-VIP) mice (B), IEC proliferation determined by Ki67 immunostaining (C), selective labeling of
neutral mucins with PAS and quantification of PAS+ve cells as total number of PAS+ve cells/HPF (D) and cell death determined by TUNEL staining (E);
n = 6–7 animals/ group, results are represented as means ± SEM, *P<0.05, **P< 0.01, ***P<0.001. Scale bar = 50 μm. Arrows highlight Ki67 +ve cells in
(C) and PAS+ve cells in (D).

doi:10.1371/journal.pone.0125225.g006

VIP Promotes Intestinal Epithelial Barrier Homeostasis

PLOS ONE | DOI:10.1371/journal.pone.0125225 May 1, 2015 14 / 19



relationship between VIP and intestinal barrier integrity in the absence of inflammation-
induced injury.

Data generated in this study expand on early indications that VIP plays a key role in protect-
ing the colonic epithelium against bacterial pathogens [10]. Impaired crypt cellular dynamics
including reduced IEC proliferation and migration as well as increased IEC apoptosis in the
VIPKO mouse creates a vulnerable and leaky intestinal barrier that proved highly susceptible
to both DSS and DNBS-induced colitis. Furthermore, the impaired IEC proliferative response
and increased apoptosis likely contributed to impaired epithelial regenerative capacity of
VIPKO mice. Similarly, in IBD patients, inflammation induced alterations in VIP+ neurons
and its receptors [3–5] might contribute to disease pathogenesis through loss of VIP-mediated
regulation of epithelial homeostasis. The heightened susceptibility to DSS in VIPKO mice ob-
served by us differs from that observed by other researchers [12, 13]. At least two explanations
may account for such a difference. One is that mice raised in different facilities or fed by differ-
ent diets may show different microbiota composition. In fact, Ooi et al [35] have recently
shown that feeding WTmice three different standard laboratory diets for 2 weeks resulted in
very different responses to DSS challenge, which was shown to be related to changes in com-
mensal bacteria. The other explanation is that different methodologies are used between stud-
ies. We switched to tap water from DSS for days 7–9, whereas the other studies either switched
to tap water from DSS for days 5–10 or did not switch at all to tap water from DSS. The com-
plexity of the VIP KO mouse model is further highlighted by the recent study of Abad et al,
[14]. They showed that although VIP KO mice developed a milder clinical response to TNBS-
induced colitis than WTmice, the histological scores and cytokine levels in the colon were sim-
ilar between mouse strains. Moreover, splenocytes from TNBS-treated VIP KO mice exhibited
an enhanced proliferative response to anti-CD3/CD28 stimulation in vitro [14].

Previous studies have provided insights into the relationship between ENS derived media-
tors and function of intestinal goblet cells in mucosal defense [24, 25, 36]. VIP has been shown
to regulate MUC2 transcription [36] and secretion of mucin and TFF3 [25, 37]. Furthermore,
studies indicate that Muc2 and Tff3 preserve mucosal integrity, and protect the epithelium
from injury by noxious agents [38, 39]. Hence, the discovery that VIPKO mice possessed sig-
nificantly fewer morphologically mature goblet cells, and produced less Muc2 and Tff3 than
WTmice offers an additional explanation for their susceptibility to chemically induced colitis.
Indeed, the goblet cell derived mucus layer coating the GI tract is considered the first line of
mucosal defense, protecting the host from luminal microbes and other noxious agents through
the barrier actions of MUC2 as well as the actions of bioactive molecules such as Tff3 [38, 39].
Defects in the thickness and/or function of the mucus layer can alter localization of commensal
microbiota, increasing bacterial adhesion to mucosal surfaces. It can also increase intestinal
permeability, and enhance susceptibility to colitis [38, 40], similar to the phenotype observed
in our VIPKO mice. Moreover, studies have reported that in UC patients, goblet cell numbers
are depleted, and mucin production is often reduced, leading to a thinner mucus layer, and im-
paired barrier integrity [41, 42]. Indeed,Muc2-/- mice lacking a mucus layer develop spontane-
ous colitis [43] and colorectal cancer [39] demonstrating that Muc2 production impacts
intestinal physiology [44].

The impaired migration of IEC and goblet cells to crypt surfaces of VIPKO mice [22], as
well as their defects in tissue repair likely result from their reduced expression of Tff3 [45].
Similarly, mice deficient in Tff3 (Tff3-/-) when challenged with DSS developed severe colitis, to-
gether with increased IEC apoptosis and poor epithelial regeneration. Notably, administration
of recombinant TFF3 (rTFF3) to Tff3-/- mice restored intestinal epithelial restitution [22, 46].
Similarly, treating VIPKO mice with exogenous VIP protected IEC dynamics and goblet cell
secretary capacity, reducing susceptibility to DSS-induced colitis.
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The beneficial response of VIPKO mice to exogenous VIP further highlights that the
VIPKO mouse phenotype can be rescued, and is thus not due to developmental defects. More-
over in preliminary experiments, we observed no gross differences in NOS, SP and NPY immu-
noreactivity in the myenteric plexus, consistent with a previous report [15]. A notable finding
is that VIP can regulate Cdx2 expression, both in vitro and in vivo. Current data suggests that
Cdx2 controls a number of IEC specific genes, while our data suggests that Cdx2 is likely in-
volved in contributing to the balance between proliferation, migration and maturation of IEC,
promoting an intact epithelial cell/ mucus defense barriers [27, 47]. Indeed, studies have dem-
onstrated that Cdx2 targets cellular adhesion genes Claudin-2, E and L cadherin [48, 49], and
MUC2 [50, 51] reinforcing the proposed role for Cdx2 as a key regulator of epithelial cellular
dynamics and barrier integrity. Furthermore, there is evidence that Cdx2 expression is reduced
in inflamed tissues of UC patients [52], although this might be secondary to the disease. Never-
theless, heterozygous Cdx2+/- mice are reported to suffer increased intestinal permeability and
heightened susceptibility to DDS-induced colitis suggesting a causal relationship [53]. Given
the strategic positioning of Cdx2 as a key regulator of numerous intestinal genes, and its link-
age to preserving intestinal homeostasis and permeability, altered Cdx2 expression and activity
in VIPKO mice most likely underlies their intestinal barrier vulnerability and enhanced sensi-
tivity to chemically-induced colitis. Moreover, the current study shows a novel link between
VIP and Cdx2 activation; however further studies are required to better understand the relation
between VIP, Cdx2, and susceptibility to colitis.

In summary, VIP plays a crucial role in the development and maintenance of colonic epi-
thelial and mucus barrier integrity, potentially through activation of Cdx2. VIP regulates co-
lonic crypt cell proliferation, migration, and maturation, as well as secretion of bioactive goblet
cell peptides, and promotes tissue repair and homeostasis, thereby controlling susceptibility to
colitis. Further studies examining the role of the enteric neuroendocrine system in the regula-
tion of intestinal barrier defense and mucosal immune responses may lead to a better under-
standing of IBD pathogenesis and to new avenues of therapeutic intervention in the
management of patients with IBD.
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